MiniTensor: A Lightweight, High-Performance Tensor Operations Library
Abstract
We present MiniTensor, an open source tensor operations library that focuses on minimalism, correctness, and performance. MiniTensor exposes a familiar PyTorch-like Python API while it executes performance critical code in a Rust engine. The core supports dense $n$ dimensional tensors, broadcasting, reductions, matrix multiplication, reverse mode automatic differentiation, a compact set of neural network layers, and standard optimizers. In this paper, we describe the design of MiniTensor's architecture, including its efficient memory management, dynamic computation graph for gradients, and integration with Python via PyO3. We also compare the install footprint with PyTorch and TensorFlow to demonstrate that MiniTensor achieves a package size of only a few megabytes, several orders of magnitude smaller than mainstream frameworks, while preserving the essentials needed for research and development on CPUs. The repository can be found at https://github.com/neuralsorcerer/minitensor
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Mathematical Software
- Adaptive Benign Overfitting (ABO): Overparameterized RLS for Online Learning in Non-stationary Time-series0 citations
- Applications of QR-based Vector-Valued Rational Approximation0 citations
- An Efficient Batch Solver for the Singular Value Decomposition on GPUs0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.