Adaptive Benign Overfitting (ABO): Overparameterized RLS for Online Learning in Non-stationary Time-series
Abstract
Overparameterized models have recently challenged conventional learning theory by exhibiting improved generalization beyond the interpolation limit, a phenomenon known as benign overfitting. This work introduces Adaptive Benign Overfitting (ABO), extending the recursive least-squares (RLS) framework to this regime through a numerically stable formulation based on orthogonal-triangular updates. A QR-based exponentially weighted RLS (QR-EWRLS) algorithm is introduced, combining random Fourier feature mappings with forgetting-factor regularization to enable online adaptation under non-stationary conditions. The orthogonal decomposition prevents the numerical divergence associated with covariance-form RLS while retaining adaptability to evolving data distributions. Experiments on nonlinear synthetic time series confirm that the proposed approach maintains bounded residuals and stable condition numbers while reproducing the double-descent behavior characteristic of overparameterized models. Applications to forecasting foreign exchange and electricity demand show that ABO is highly accurate (comparable to baseline kernel methods) while achieving speed improvements of between 20 and 40 percent. The results provide a unified view linking adaptive filtering, kernel approximation, and benign overfitting within a stable online learning framework.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Mathematical Software
- MiniTensor: A Lightweight, High-Performance Tensor Operations Library0 citations
- Applications of QR-based Vector-Valued Rational Approximation0 citations
- An Efficient Batch Solver for the Singular Value Decomposition on GPUs0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.