Perfect Network Resilience in Polynomial Time
Abstract
Modern communication networks support local fast rerouting mechanisms to quickly react to link failures: nodes store a set of conditional rerouting rules which define how to forward an incoming packet in case of incident link failures. The rerouting decisions at any node $v$ must rely solely on local information available at $v$: the link from which a packet arrived at $v$, the target of the packet, and the incident link failures at $v$. Ideally, such rerouting mechanisms provide perfect resilience: any packet is routed from its source to its target as long as the two are connected in the underlying graph after the link failures. Already in their seminal paper at ACM PODC '12, Feigenbaum, Godfrey, Panda, Schapira, Shenker, and Singla showed that perfect resilience cannot always be achieved. While the design of local rerouting algorithms has received much attention since then, we still lack a detailed understanding of when perfect resilience is achievable. This paper closes this gap and presents a complete characterization of when perfect resilience can be achieved. This characterization also allows us to design an $O(n)$-time algorithm to decide whether a given instance is perfectly resilient and an $O(nm)$-time algorithm to compute perfectly resilient rerouting rules whenever it is. Our algorithm is also attractive for the simple structure of the rerouting rules it uses, known as skipping in the literature: alternative links are chosen according to an ordered priority list (per in-port), where failed links are simply skipped. Intriguingly, our result also implies that in the context of perfect resilience, skipping rerouting rules are as powerful as more general rerouting rules. This partially answers a long-standing open question by Chiesa, Nikolaevskiy, Mitrovic, Gurtov, Madry, Schapira, and Shenker [IEEE/ACM Transactions on Networking, 2017] in the affirmative.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Data Structures and Algorithms
- Fast-MWEM: Private Data Release in Sublinear Time0 citations
- Exploiting Multi-Core Parallelism in Blockchain Validation and Construction0 citations
- ZOR filters: fast and smaller than fuse filters0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.