Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Abstract
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Software Engineering
- SWE-Refactor: A Repository-Level Benchmark for Real-World LLM-Based Code Refactoring0 citations
- FullStack-Agent: Enhancing Agentic Full-Stack Web Coding via Development-Oriented Testing and Repository Back-Translation0 citations
- Improving Deep Learning Library Testing with Machine Learning0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.