Bringing Reasoning to Generative Recommendation Through the Lens of Cascaded Ranking
Abstract
Generative Recommendation (GR) has become a promising end-to-end approach with high FLOPS utilization for resource-efficient recommendation. Despite the effectiveness, we show that current GR models suffer from a critical \textbf{bias amplification} issue, where token-level bias escalates as token generation progresses, ultimately limiting the recommendation diversity and hurting the user experience. By comparing against the key factor behind the success of traditional multi-stage pipelines, we reveal two limitations in GR that can amplify the bias: homogeneous reliance on the encoded history, and fixed computational budgets that prevent deeper user preference understanding. To combat the bias amplification issue, it is crucial for GR to 1) incorporate more heterogeneous information, and 2) allocate greater computational resources at each token generation step. To this end, we propose CARE, a simple yet effective cascaded reasoning framework for debiased GR. To incorporate heterogeneous information, we introduce a progressive history encoding mechanism, which progressively incorporates increasingly fine-grained history information as the generation process advances. To allocate more computations, we propose a query-anchored reasoning mechanism, which seeks to perform a deeper understanding of historical information through parallel reasoning steps. We instantiate CARE on three GR backbones. Empirical results on four datasets show the superiority of CARE in recommendation accuracy, diversity, efficiency, and promising scalability. The codes and datasets are available at https://github.com/Linxyhaha/CARE.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Information Retrieval
- RAGTurk: Best Practices for Retrieval Augmented Generation in Turkish0 citations
- Controlling Output Rankings in Generative Engines for LLM-based Search0 citations
- Multimodal Generative Recommendation for Fusing Semantic and Collaborative Signals0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.