Improved Analysis of the Accelerated Noisy Power Method with Applications to Decentralized PCA
Abstract
We analyze the Accelerated Noisy Power Method, an algorithm for Principal Component Analysis in the setting where only inexact matrix-vector products are available, which can arise for instance in decentralized PCA. While previous works have established that acceleration can improve convergence rates compared to the standard Noisy Power Method, these guarantees require overly restrictive upper bounds on the magnitude of the perturbations, limiting their practical applicability. We provide an improved analysis of this algorithm, which preserves the accelerated convergence rate under much milder conditions on the perturbations. We show that our new analysis is worst-case optimal, in the sense that the convergence rate cannot be improved, and that the noise conditions we derive cannot be relaxed without sacrificing convergence guarantees. We demonstrate the practical relevance of our results by deriving an accelerated algorithm for decentralized PCA, which has similar communication costs to non-accelerated methods. To our knowledge, this is the first decentralized algorithm for PCA with provably accelerated convergence.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Distributed, Parallel, and Cluster Computing
- Recursive Energy Efficient Agreement0 citations
- Do We Need Asynchronous SGD? On the Near-Optimality of Synchronous Methods0 citations
- Mitigating Staleness in Asynchronous Pipeline Parallelism via Basis Rotation0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.