Low-Complexity Distributed Combining Design for Near-Field Cell-Free XL-MIMO Systems
Abstract
In this paper, we investigate the low-complexity distributed combining scheme design for near-field cell-free extremely large-scale multiple-input-multiple-output (CF XL-MIMO) systems. Firstly, we construct the uplink spectral efficiency (SE) performance analysis framework for CF XL-MIMO systems over centralized and distributed processing schemes. Notably, we derive the centralized minimum mean-square error (CMMSE) and local minimum mean-square error (LMMSE) combining schemes over arbitrary channel estimators. Then, focusing on the CMMSE and LMMSE combining schemes, we propose five low-complexity distributed combining schemes based on the matrix approximation methodology or the symmetric successive over relaxation (SSOR) algorithm. More specifically, we propose two matrix approximation methodology-aided combining schemes: Global Statistics \& Local Instantaneous information-based MMSE (GSLI-MMSE) and Statistics matrix Inversion-based LMMSE (SI-LMMSE). These two schemes are derived by approximating the global instantaneous information in the CMMSE combining and the local instantaneous information in the LMMSE combining with the global and local statistics information by asymptotic analysis and matrix expectation approximation, respectively. Moreover, by applying the low-complexity SSOR algorithm to iteratively solve the matrix inversion in the LMMSE combining, we derive three distributed SSOR-based LMMSE combining schemes, distinguished from the applied information and initial values.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Information Theory
- A Narrowband Fully-Analog Multi-Antenna Transmitter0 citations
- Secure Decentralized Pliable Index Coding for Target Data Size0 citations
- Sleep or Transmit: Dual-Mode Energy-Efficient Design for NOMA-Enabled Backscatter Networks0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.