How to Train Your Resistive Network: Generalized Equilibrium Propagation and Analytical Learning
Abstract
Machine learning is a powerful method of extracting meaning from data; unfortunately, current digital hardware is extremely energy-intensive. There is interest in an alternative analog computing implementation that could match the performance of traditional machine learning while being significantly more energy-efficient. However, it remains unclear how to train such analog computing systems while adhering to locality constraints imposed by the physical (as opposed to digital) nature of these systems. Local learning algorithms such as Equilibrium Propagation and Coupled Learning have been proposed to address this issue. In this paper, we develop an algorithm to exactly calculate gradients using a graph theoretic and analytical framework for Kirchhoff's laws. We also introduce Generalized Equilibrium Propagation, a framework encompassing a broad class of Hebbian learning algorithms, including Coupled Learning and Equilibrium Propagation, and show how our algorithm compares. We demonstrate our algorithm using numerical simulations and show that we can train resistor networks without the need for a replica or readout over all resistors, only at the output layer. We also show that under the analytical gradient approach, it is possible to update only a subset of the resistance values without a strong degradation in performance.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Disordered Systems and Neural Networks
- Physics-inspired transformer quantum states via latent imaginary-time evolution0 citations
- Long-range spin glass in a field at zero temperature0 citations
- When pre-training hurts LoRA fine-tuning: a dynamical analysis via single-index models0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.