Sharp Inequalities between Total Variation and Hellinger Distances for Gaussian Mixtures
Abstract
We study the relation between the total variation (TV) and Hellinger distances between two Gaussian location mixtures. Our first result establishes a general upper bound: for any two mixing distributions supported on a compact set, the Hellinger distance between the two mixtures is controlled by the TV distance raised to a power $1-o(1)$, where the $o(1)$ term is of order $1/\log\log(1/\mathrm{TV})$. We also construct two sequences of mixing distributions that demonstrate the sharpness of this bound. Taken together, our results resolve an open problem raised in Jia et al. (2023) and thus lead to an entropic characterization of learning Gaussian mixtures in total variation. Our inequality also yields optimal robust estimation of Gaussian mixtures in Hellinger distance, which has a direct implication for bounding the minimax regret of empirical Bayes under Huber contamination.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Statistics Theory
- On the compatibility between the spatial moments and the codomain of a real random field0 citations
- Evaluating LLMs When They Do Not Know the Answer: Statistical Evaluation of Mathematical Reasoning via Comparative Signals0 citations
- Optimal neural network approximation of smooth compositional functions on sets with low intrinsic dimension0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.