Learning Fast Monomial Orders for Gröbner Basis Computations
Abstract
The efficiency of Gröbner basis computation, the standard engine for solving systems of polynomial equations, depends on the choice of monomial ordering. Despite a near-continuum of possible monomial orders, most implementations rely on static heuristics such as GrevLex, guided primarily by expert intuition. We address this gap by casting the selection of monomial orderings as a reinforcement learning problem over the space of admissible orderings. Our approach leverages domain-informed reward signals that accurately reflect the computational cost of Gröbner basis computations and admits efficient Monte Carlo estimation. Experiments on benchmark problems from systems biology and computer vision show that the resulting learned policies consistently outperform standard heuristics, yielding substantial reductions in computational cost. Moreover, we find that these policies resist distillation into simple interpretable models, providing empirical evidence that deep reinforcement learning allows the agents to exploit non-linear geometric structure beyond the scope of traditional heuristics.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Symbolic Computation
- Complete Reduction for Derivatives in a Transcendental Liouvillian Extension0 citations
- A zero-test for D-algebraic transseries0 citations
- An algorithm for annihilator and Bernstein-Sato polynomial of a rational function0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.