An Improved Quasi-Physical Dynamic Algorithm for Efficient Circular Coverage in Arbitrary Convex
Abstract
The optimal circle coverage problem aims to find a configuration of circles that maximizes the covered area within a given region. Although theoretical optimal solutions exist for simple cases, the problem's NP-hard characteristic makes the problem computationally intractable for complex polygons with numerous circles. Prevailing methods are largely confined to regular domains, while the few algorithms designed for irregular polygons suffer from poor initialization, unmanaged boundary effects, and excessive overlap among circles, resulting in low coverage efficiency. Consequently, we propose an Improved Quasi-Physical Dynamic(IQPD) algorithm for arbitrary convex polygons. Our core contributions are threefold: (1) proposing a structure-preserving initialization strategy that maps a hexagonal close-packing of circles into the target polygon via scaling and affine transformation; (2) constructing a virtual force field incorporating friction and a radius-expansion optimization iteration model; (3) designing a boundary-surrounding strategy based on normal and tangential gradients to retrieve overflowing circles. Experimental results demonstrate that our algorithm significantly outperforms four state-of-the-art methods on seven metrics across a variety of convex polygons. This work could provide a more efficient solution for operational optimization or resource allocation in practical applications.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Computational Geometry
- Greedy Routing Reachability Games0 citations
- Counting Unit Circular Arc Intersections0 citations
- Point Vortex Dynamics on Closed Surfaces0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.