Optimizing Tensor Train Decomposition in DNNs for RISC-V Architectures Using Design Space Exploration and Compiler Optimizations
Abstract
Deep neural networks (DNNs) have become indispensable in many real-life applications like natural language processing, and autonomous systems. However, deploying DNNs on resource-constrained devices, e.g., in RISC-V platforms, remains challenging due to the high computational and memory demands of fully connected (FC) layers, which dominate resource consumption. Low-rank factorization (LRF) offers an effective approach to compressing FC layers, but the vast design space of LRF solutions involves complex trade-offs among FLOPs, memory size, inference time, and accuracy, making the LRF process complex and time-consuming. This paper introduces an end-to-end LRF design space exploration methodology and a specialized design tool for optimizing FC layers on RISC-V processors. Using Tensor Train Decomposition (TTD) offered by TensorFlow T3F library, the proposed work prunes the LRF design space by excluding first, inefficient decomposition shapes and second, solutions with poor inference performance on RISC-V architectures. Compiler optimizations are then applied to enhance custom T3F layer performance, minimizing inference time and boosting computational efficiency. On average, our TT-decomposed layers run 3x faster than IREE and 8x faster than Pluto on the same compressed model. This work provides an efficient solution for deploying DNNs on edge and embedded devices powered by RISC-V architectures.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Hardware Architecture
- CHAOS: Controlled Hardware fAult injectOr System for gem50 citations
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning0 citations
- Position: The Need for Ultrafast Training0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.