COLT: Lightweight Multi-LLM Collaboration through Shared MCTS Reasoning for Model Compilation
Abstract
Model serving costs dominate AI systems, making compiler optimization essential for scalable deployment. Recent works show that a large language model (LLM) can guide compiler search by reasoning over program structure and optimization history. However, using a single large model throughout the search is expensive, while smaller models are less reliable when used alone. Thus, this paper seeks to answer whether multi-LLM collaborative reasoning relying primarily on small LLMs can match or exceed the performance of a single large model. As such, we propose a lightweight collaborative multi-LLM framework, dubbed COLT, for compiler optimization that enables coordinated reasoning across multiple models within a single Monte Carlo tree search (MCTS) process. A key contribution is the use of a single shared MCTS tree as the collaboration substrate across LLMs, enabling the reuse of transformation prefixes and cross-model value propagation. Hence, we circumvent both heavy internal reasoning mechanisms and conventional agentic machinery that relies on external planners, multiple concurrent LLMs, databases, external memory/versioning of intermediate results, and controllers by simply endogenizing model selection within the lightweight MCTS optimization loop. Every iteration, the acting LLM proposes a joint action: (compiler transformation, model to be queried next). We also introduce a model-aware tree policy that biases search toward smaller models while preserving exploration, and a course-alteration mechanism that escalates to the largest model when the search exhibits persistent regressions attributable to smaller models.
Growth and citations
This paper is currently showing No growth state computed yet..
Citation metrics and growth state from academic sources (e.g. Semantic Scholar). See About for details.
Cited by (0)
No citing papers yet
Papers that cite this one will appear here once data is available.
View citations page →References (0)
No references in DB yet
References for this paper will appear here once ingested.
Related papers in Programming Languages
- Layered Modal ML: Syntax and Full Abstraction0 citations
- Efficient Algorithms for Partial Constraint Satisfaction Problems over Control-flow Graphs0 citations
- Phoenix: A Modular and Versatile Framework for C/C++ Pointer Analysis0 citations
Growth transitions
No transitions recorded yet
Growth state transitions will appear here once computed.